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Abstract. The K̂(d ) function is a summary statistic of all plant–plant distances in a
mapped area. It offers the potential for detecting both different types and scales of patterns
in a single map. Two types of errors occur in maps of individual plants. Data management
errors, caused by transcription errors or other mishandling, are large errors and apply to
small numbers of plants. Measurement errors, caused by the mapping techniques and equip-
ment, are small errors that apply to all plants. Simulation of known spatial patterns combined
with increasing levels of both types of error showed that: (1) data management errors cause
the spatial patterns identified by the statistical function K̂(d ) to become less significant but
do not cause a shift in scale of the identified patterns; and (2) measurement errors caused
the spatial patterns identified by K̂(d ) to become less significant and to shift to larger scales.
The effects of measurement errors are inversely proportional to the scale of interaction
between plants on the map. Detection of inhibition between points is more sensitive to
measurement error than detection of clustering; detection of small clusters is more sensitive
than detection of large clusters; and measurement error tends to cause an overestimation
of clumping size. For patterns with inhibition, estimating minimum establishment distance
is more sensitive to error than the maximum distance at which inhibition affects survival
probability.

Two examples of tree spatial distributions from the Wind River Canopy Crane Research
Facility stem map data set were analyzed using the K̂(d ) function. Clusters of Thuja plicata
were detected and were much larger than levels of mapping error identified in the data.
Significant inhibition occurs between large (dbh $20 cm) trees of all species at a scale
much greater than the level of mapping error. However, the minimum distance of significant
inhibition (i.e., the distance within which neighbors are never found) was on the order of
the mapping error. Accurate identification of inhibition may not be possible using K̂(d ).

Key words: aggregation; clumping; data quality; error analysis; inhibition; K(d); point processes;
regularity; spatial pattern; spatial statistics; stem map; Thuja plicata.

INTRODUCTION

Spatial statistics calculated from measured distances
between individual plants are increasingly used when
studying interactions between plants and when inves-
tigating the structure of ecological communities. Single
valued statistics reduce the entire spatial pattern to a
single number to detect clumping or spatial inhibition.
These statistics are based on nearest neighbor distances
(Clark and Evans 1954, Pielou 1962, Donnelly 1978)
or sample point to nearest neighbor distances (Hopkins
1954, Pielou 1959). From these statistics, it was pro-
posed that single species forest stands (Laesele 1965)
and desert vegetation (Phillips and MacMahon 1981)
shift over time from clumped patterns of seedlings and
young plants towards regularity due to competition.

However, single value statistics are limited. They
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give no information on the spatial scales of patterns,
nor do they provide information such as size of clusters
or the distance of strongest inhibition. Most impor-
tantly they cannot define mixed patterns (Pielou 1962;
e.g., inhibition at small scales within larger scale
clumping). Increasingly the K̂(d ) function (Ripley
1977, Diggle 1983, Haase 1995) is being used for these
purposes. K̂(d ) is a transformation of all interplant dis-
tances that is graphed against d. Software (e.g.,
MathSoft 1996) is available for calculating K̂(d ). The
basic assumptions of K̂(d ) analysis are that: (1) the
individual plant is the elementary sampling unit and
defines grain size (Legendre and Legendre 1998:708–
709); and (2) the size of the mapped area defines the
extent of the sample. K̂(d ) describes the distribution of
intervals between the plants on the sample area and,
unless otherwise mentioned, scale refers to the size of
these intervals.

Ecologists using K̂(d ), or its square root transfor-
mation, L̂(d ) (Besag 1977, Diggle 1983) have found
more complex spatial patterns than simply clumped,



36 ELIZABETH A. FREEMAN AND E. DAVID FORD Ecology, Vol. 83, No. 1

random, or regular, and have used these results to make
inferences about pattern forming processes. For ex-
ample, Sterner et al. (1986) measured clumping in ju-
veniles of three tropical tree species. The spatial pattern
of adults was significantly more uniform than could be
explained by random thinning of the juvenile clumps.
Sterner et al. suggested that this pattern of mortality is
consistent with the Connell–Janzen hypothesis for the
maintenance of high species richness in tropical forests
(Connell 1970, Janzen 1970). Kenkel (1988) used L̂(d )
analysis, along with a refined nearest neighbor analysis,
to study self-thinning in pure stands of Pinus banksi-
ana. Based on changes in spatial pattern and stand
density with increasing stand age, he suggested that
two distinct competitive phases occurred: an early
scramble phase of two-sided competition for soil re-
sources, and a later one-sided competition for light. In
both the Sterner et al. (1986) and Kenkel (1988) anal-
yses, the identification of regularity within the spatial
pattern indicating competition was crucial to the eco-
logical interpretations.

L̂(d ) is also being used in ecological modeling to
define the structure of the model and to estimate pa-
rameter values. See Moeur (1993, 1997) for old-growth
forest, Kenkel (1993) for the clonal herb Aralia nu-
dicaulis, and Batista and Maguire (1998) for regener-
ating tropical forest. A crucial feature of each model
is estimation of spatial inhibition.

For detailed analysis of spatial pattern, one needs to
know the accuracy of L̂(d ). This accuracy depends
upon the accuracy of the mapped data. Several mapping
techniques have been reported for stands of trees. To
calculate tree positions Kenkel (1988) first established
a rectangular grid and then measured the distribution
of individuals within each grid segment to each of its
corners. Kenkel (1993) used a similar procedure for
mapping individuals of the herb A. nudicaulis in 5 3
5 m plots. Moeur (1993) cruised through sample plots
by establishing individual reference points from which
tree azimuths and distances were surveyed.

Research into developing field mapping techniques
for individual plants has focussed on attaining a bal-
ance between the speed of a survey and the accuracy
of the map obtained. Rohlf and Archie (1978) proposed
a rapid technique based on progressive mapping of in-
dividuals relative to previously mapped trees, without
establishing and surveying plot corners. Hall (1991)
checked this procedure, using both a grid method and
by simulation techniques, and concluded that propa-
gation of errors was a serious problem and that locating
errors can be nearly impossible. Boose et al. (1998)
reported improvements on this method and found that
errors in tree locations depended on how accurately the
distances were measured between trees and on the num-
ber of trees on the plot.

In this paper we investigate how the type and mag-
nitude of errors that might be acceptable depend upon
both the type and scale of the pattern of interest. We

examine data management errors and measurement er-
rors and calculate their effects on the identification of
spatial patterns using L̂(d ) as well as their effects on
detecting and defining cluster and inhibition patterns.
We use both simulations and data examples from an
old-growth Pseudotsuga menziesii–Tsuga heterophylla
forest (Franklin and Dyrness 1988).

METHODS

Strategy of investigation using simulation

We simulated data points in order to specify both
clustered and inhibition patterns. We modified individ-
ual points to simulate mapping errors. By comparing
L̂(d ) from the modified data points to L̂(d ) from the
original data points the effects of the simulated errors
on the L̂(d ) transformation of K̂(d ) were examined.
Both data management errors and measurement errors
were found in the Wind River Canopy Crane Research
Facility (WRCCRF) stem map data set (Freeman 1997).
These were simulated, respectively, by replacement of
points and by moving points specific distances accord-
ing to the error. Results are given both as a summary
of all the simulations, and by a single example of each
of the four combinations of spatial patterns (clustered
vs. inhibited) and error type (measurement error vs.
data management error). The complete set of simula-
tions of different types of pattern combined with dif-
ferent amounts of error is presented in Freeman (1997).

Simulated spatial patterns

The simulated plot was a unit square of area A, with
n 5 100 points. A toroidal wrap-around of the square
boundaries was used so that edge effects were not a
concern.

Poisson cluster process.—In a Poisson cluster pro-
cess, parent events are distributed randomly each form-
ing a cluster center assigned a random number of n
offspring. Offspring are spatially distributed around
their parent with a bivariate normal distribution with
standard deviation scluster. A range of cluster sizes was
investigated: scluster 5 0.025, 0.05, 0.075, and 0.10. On
the 200 3 200 m Wind River Canopy Crane Research
Facility (WRCCRF) stem map this was equivalent to
scluster 5 5 m, 10 m, 15 m, and 20 m. Note that scluster

is the standard deviation of the distance between each
offspring and its parent, so cluster size is ;2scluster.

Markov point inhibition process.—A Markov point
inhibition process assumes that only its potential neigh-
bors affect the probability that a new point can become
established. There is a cutoff distance, a, where, if any
potential neighbor is closer than this distance then es-
tablishment is prohibited. There is a large distance, b,
defining the outer limit of a plant’s inhibitory effect.
In this study, the probability of establishment, given a
neighbor between the distances a and b, was chosen to
be a linear function of distance. The minimum estab-
lishment distance was set at a 5 0.005 and the maxi-
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mum distance of inhibition varied over b 5 0.05, 0.10,
0.15, and 0.20. On the WRCCRF stem map this was
equivalent to a 5 1 m and b 5 10 m, 20 m, 30 m, and
40 m.

Complete spatial randomness.—Complete spatial
randomness (CSR) was used, as an aid in the simulation
procedures, as part of the error simulation, and as a
null hypothesis in Monte Carlo tests. CSR assumes the
mean number of points in any region A with area zAz
follows a Poisson distribution with mean m 5 l 3 zAz,
and given n points in A, the points are an independent
random sample from the uniform distribution on A
(Diggle 1983).

The two types of errors

Data management errors.—These include errors
made in the field (e.g., measuring the wrong plant or
misidentifying a plant) as well as errors in data han-
dling (e.g., incorrectly transcribing data, where 314.2
degrees azimuth may be recorded as 312.4 degrees or
as 134.2 degrees). Data management errors can be any
size, but generally affect few data points.

Measurement errors.—These are inherent in map-
ping techniques and equipment. Their magnitude de-
pends on the equipment used. A tree map made with
a hand held compass and a measuring tape is likely to
have greater absolute measurement errors than one
made with a tripod based electronic theodolite and laser
range finder. Mapping techniques also influence the
magnitude of these errors. If a grid is established first,
and individuals are mapped relative to the grid points,
cumulative errors are minimized. If individuals are
mapped sequentially, each relative to previously
mapped individuals, large errors can accumulate (Hall
1991), although Boose et al. (1998) describe a proce-
dure and calculation method for minimizing errors.
Generally, measurement errors are small when a grid
is used, but they can potentially affect all data points.

A note on absolute vs. relative errors

Error analysis of a mapped data set reveals absolute
levels of error (e.g., the number of displaced points and
the limits to mapping accuracy of correctly placed
points). In this study, however, we consider relative
error. For data management error, relative error is the
number of displaced points relative to the total number
of trees. This is straightforward to calculate, as it does
not depend on the underlying, and possibly unknown,
spatial pattern. For measurement error, relative error is
the limit of mapping accuracy of correctly placed
points, relative to the scale of the underlying spatial
pattern. In simulations, the scale of the pattern is
known, and thus the relative error can be calculated.
For actual stem maps, the underlying scale is unknown;
after all, discovering this scale may be the purpose of
making the map. However, the measurement error can
still be calculated relative to the scale of interest. For
example, when investigating inhibition processes, the

interactions of interest are on a smaller scale than when
examining cluster processes. Therefore, any mapping
errors will be relatively larger, compared to small-scale
patterns. Note that in distributions with more than one
parameter, such as in Markov point processes, the error
can be calculated relative to each parameter.

Examples of absolute error levels would be: ‘‘in the
preliminary survey data management errors occurred
in 11 out of 253 trees,’’ or ‘‘the measurement errors
have a standard deviation of 0.43 m.’’ Relative error
levels would be: ‘‘4.3% of the points are subject to data
management errors,’’ or ‘‘the standard deviation of the
measurement error is 67% of the predicted inhibition
distance.’’

Simulated errors

Data management errors.—Data management errors
were simulated by creating large errors in location in
a percentage of the data points. These points were ran-
domly selected, and the true points were replaced with
randomly located points to simulate poor data man-
agement. This is equivalent to a few plants of the wrong
species being included in a map, or some of the map-
ping data being misrecorded or mistranscribed. The
percentage of replacements was set to 0, 5, 10, and 20.
This range is likely to be wider than most data man-
agement errors where the objects can be clearly iden-
tified and mapped (e.g., individual trees in a single
species stand), but it was used to cover situations where
data management can be difficult.

Primarily we used random points for replacement.
There are many possible combinations of original dis-
tribution and replacement distribution, and examining
all of them was prohibitive. We did, however, inves-
tigate two combinations: clustered distributions with
replacement from an inhibited distribution with a 5
0.005 and b 5 0.20; and inhibited distributions with
replacement from a clustered distribution with scluster 5
0.025. This is equivalent to mistakenly including a few
trees of the wrong species, with a different spatial pat-
tern, in a map.

Measurement errors.—Measurement errors were
simulated as small errors in location applied to all data
points. Each point was shifted a small distance based
on a bivariate normal distribution centered on the point,
with a standard deviation serror 5 0, 0.025, 0.050, and
0.100. Translating from the simulation to a square the
size of the WRCCRF stem map (200 m on a side), this
was equivalent to absolute errors of serror 5 0 m, 5 m,
10 m, and 20 m. These were several orders of mag-
nitude larger than the measurement errors in the
WRCCRF stem map. However, errors of several meters
may be realistic for a tree stem map of a large area
made with a tape measure and hand compass without
using a fixed grid system. Also, in the investigation of
grasslands, for example, absolute errors may be low
due the small distances between individuals, while rel-
ative error may be high.
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Simulations were made on the unit square with serror,
the error relative to this unit square. The measurement
error relative to the scale of the underlying pattern is
the ratio of serror to the scale of the pattern. For clustered
patterns, cluster size was 2scluster. This is because spatial
analysis with K̂(d ) is related to the diameter of the
clusters, and scluster is related to the radius of the clus-
ters. Inhibited patterns were generated with a Markov
point process, with parameters a and b, and relative
error was calculated for each parameter. We made 100
simulations for each combination of parameter value
used in defining pattern with either replacement rate
for data management errors or serror for measurement
error.

Spatial analysis of simulated data

The K̂(d ) statistic.—K̂(d ), a second order parameter,
considers all distances between all individual points,
not just the distances between nearest neighbors. Con-
sequently, it gives more information on the scale of the
patterns than do first order tests such as G (the cu-
mulative frequency distribution of nearest neighbor
distances) or F (the cumulative frequency distribution
of arbitrary points to nearest neighbors; see Diggle
1983).

K(d ) is the expected number of points within a given
distance of an arbitrary point. This is calculated relative
to the density of points:

K(d) 5 [E(number of points within distance d of an

arbitrary point)]/(the density of points)

where d 5 distance. Estimation is by

K̂(d)

(area of the plot)(number of distances less than d)
5

2(total number of points)

L(d ) is a square root transformation of K(d ) suggested
by Besag (1977):

1/2K(d)
L(d) 5 2 d.1 2p

L(d ) linearizes K(d ), stabilizes the variance, and under
complete spatial randomness the expected value of L(d )
is approximately zero. It can be difficult to interpret
K(d ) visually. Using L(d ) makes graphs easier to read.
Examples for different types of pattern can be found
in Diggle (1983) and practical application in Kenkel
(1993) and Moeur (1993).

L̂(d ) is calculated for a sequence of distances. As d
approaches the size of A, the results of L̂(d ) reflect
edge effects rather than the spatial patterns of the data
(Haase 1995). In this study, L̂(d ) was calculated at one
hundred distances, evenly spaced between d 5 0 and
d 5 0.5.

For simulated inhibited patterns, analysis was carried

out on the distances between d 5 0 and d 5 0.3. The
effect of inhibition on L̂(d ) is primarily governed by
interactions between nearby plants, while the effect of
clustering on L̂(d ) is governed by size of the clusters.
Thus inhibition is shown by L̂(d ) at smaller scales than
is clustering (Fig. 1).

The results of L̂(d ) are then plotted against distance.
Significance is usually evaluated by comparing the ob-
served data with Monte Carlo envelopes from multiple
simulations of the null distribution, usually complete
spatial randomness (CSR). Each simulation generates
an L̂(d ) function (Fig. 2a). The repeated series of sim-
ulations each generate a further L̂(d ) function and a
probability envelope is calculated from their highest
and lowest values (Fig. 2d). Typically an envelope is
calculated from the L̂(d ) of 99 simulations and if the
L̂(d ) of a pattern has some part outside of that envelope
it is judged to be a significant departure from CSR.

Two points had to be considered in using Monte
Carlo methods to assess the result of our simulations
of the interaction between pattern and error. First, the
Monte Carlo envelope typically has irregularities in the
bounds it defines (Fig. 2d), and repeat constructions
produce similar but not identical envelopes; therefore,
the envelope provides a guide for assessment but not
a strict test. Because of this it is inappropriate to gen-
erate a separate Monte Carlo L̂(d ) envelope for each
simulation and expect to use each one as a rigorous
arbiter of significant departure from CSR or not. As a
general guide for the 100-point distributions, 99 sim-
ulations gave values of L̂(d ) within the limit of 10.01
to 20.01 (Fig. 2d).

Second, and particularly important for this work, er-
rors may not only change the magnitude of the pattern,
but also shift the scale. Assessment of error must be
made through analysis of multiple simulations of the
interaction between pattern and error, both of them sto-
chastic processes. One hundred simulations were made
of each combination. The mean point was calculated
for these simulations at which L̂(d ) reached its extreme
value (Mean Extreme Value or MEV). This MEV is a
maximum for clustered patterns (Fig. 3a), and a min-
imum for inhibited patterns (Fig. 3b).

Spatial analysis of forest data

The WRCCRF was established in the Thornton T.
Munger Research Natural Area, in southern Washing-
ton state near the Columbia River Gorge (45849913.760
N, 12185796.880 W) to give researchers access to the
upper canopies of a low elevation old-growth Douglas
fir–Western hemlock forest with canopy trees ;500 yr
old. DeBell and Franklin (1987) and Franklin and
DeBell (1988) provide background information on
stand dynamics at this site. A 4-ha square with edges
running north–south and east–west, and with the crane
at its center point, contained 2168 trees with dbh $5
cm, including snags, divided among nine species. The
most common species were Western hemlock Tsuga
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FIG. 1. Examples of simulated point patterns on the unit square and their corresponding calculated L̂(d ) functions: (a,
b) random, (c, d) clustered, and (e, f ) inhibited.

FIG. 2. Procedure for generating a Monte Carlo envelope for L̂(d ). (a) One simulation of complete spatial randomness
(CSR) for n points. (b) A second simulation of CSR for n points added to the first simulation. (c) A third simulation of CSR
for n points added. (d) Ninety-nine simulations of CSR and the resulting Monte Carlo envelope (stippled line). Typically a
test is constructed by considering data as the 100th case and examining whether it exceeds the envelope at any scale.

heterophylla ((Raf.) Sarg.), Pacific yew Taxus brevi-
folia (Nutt.), Douglas fir Pseudotsuga menziesii
((Mirb.) Franco), and Western red cedar Thuja plicata
(Donn ex. D. Don).

Professional surveyors surveyed a 25-m grid on the
4-ha study site. All trees with dbh $5 cm were num-
bered and tagged, and species and dbh were recorded.
Tree locations were mapped from surrounding grid
points using a Criterion 400 Survey Laser (Laser Tech-
nologies, Englewood, Colorado, USA) to measure az-
imuth angle, horizontal distance, and inclination.

Eighty-five percent of the trees were measured from
two grid points. In some cases only one measurement
set was possible due to heavy underbrush or other trees.
Measurements were converted to X and Y coordinates.
To estimate the level of measurement errors, 37 trees
located in two grid squares were each mapped from
three grid points.

Measuring from two grid points increased the time
involved in collecting the data. It did not make a great
difference to the standard deviation of the measurement
errors, but it did reveal data management errors. Errors
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FIG. 3. Calculation of Mean Extreme Value for sets of clustered or inhibited patterns generated by the same process. (a)
For clustered patterns, the maximum values of each simulation (open circles) are averaged to find the mean of the maximum
values (solid circle). (b) For inhibited patterns, the minimum values of each simulation (open circles) are averaged to find
the mean of the minimum values (solid circle).

for 98 trees (4.5%) were caught in this manner when
locations that were calculated from two surveyed po-
sitions differed substantially.

By assuming that measurement error followed a bi-
variate normal distribution, with no correlation be-
tween position of the point and size of the error, the
within tree standard deviation was s 5 0.123 m when
trees were mapped from at least two grid points. Points
mapped from the mean of two measurements would
follow a bivariate normal distribution with serror 5
0.087 m.

One theory of competition states that the distribution
of plants becomes more spatially even over time, since
plants growing close together are subject to increased
competition, and thus to increased mortality (Ford
1975, Sterner et al. 1986, Kenkel 1988, 1993, Kenkel
et al. 1997). In this forest, the older, and thus larger,
trees are assumed to be survivors of such competition,
and thus would be more likely to show the effects of
inhibition as found by Moeur (1993) in an old-growth
coniferous forest. The WRCCRF has a policy of strictly
limiting destructive sampling, and cores to age trees
could not be taken.

RESULTS

The effects of errors on the mean extreme values

Data management error.—Generally the detection
of both clustering and inhibition using L̂(d ) is robust
to data management error. The addition of simulated
data management errors, drawn from a complete spatial
randomness (CSR) distribution, to clustered patterns
reduced the amplitude of the maximum values of L̂(d )
but did not shift the maximum to a larger scale (Fig.
4). Clustering was still detected even when 20% of the
points had been replaced from CSR (i.e., L̂(d ) at the

distance of 0.10 was much greater than 0.01). Similarly,
simulated data management errors added to inhibited
patterns made minimum values of L̂(d ) less extreme,
though they remained much less than 20.01, and shift-
ed them slightly to larger scales (Fig. 5). Clustered
patterns with inhibited replacement showed little dif-
ference from CSR replacement at replacement rates of
up to 20%. The inhibited patterns with clustered re-
placement were affected more strongly than with CSR
replacement, but only after replacement rate reached
20%.

The Mean Extreme Value (MEV) of L̂(d ) was cal-
culated for 100 simulations of each of four clustered
and four inhibited patterns, each combined with four
levels of simulated data management errors from a CSR
distribution. The change in MEV with increasing sim-
ulated error for both clustered (Fig. 6a) and inhibited
(Fig. 6b) patterns was generally small relative to that
found for measurement error (Fig. 6c, d). Clustered
patterns decreased in the absolute value of the MEV,
but the value was always substantially .0.01, and no
consistent change in the estimated scale of pattern was
shown. For inhibited patterns the absolute value of the
MEV increased but did not reach 20.01. With inhibited
patterns, the MEV did show a slight shift to larger
scales, but not nearly to the extent that they shifted
with measurement errors.

Measurement error.—The addition of measurement
errors over the range of simulated patterns had sub-
stantially greater effects than data management errors.
The apparent size of clusters increased (Fig. 7a, c, e,
and g) and maximum values of L̂(d ) decreased, be-
coming closer to CSR, and shifting to larger scales (Fig.
7b, d, f, and h). The shift in scale was present in all
four clustered patterns (Fig. 6). It was more obvious,
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FIG. 4. Data management error applied to a clustered pattern (scluster 5 0.10), illustrating how increasing data management
errors cause the corresponding maximum value of L̂(d ) to lose amplitude, but not to move to larger distances. Solid circles
5 maximum L̂(d ); panel (a) corresponds with (b), (c) with (d), and so forth. Calculations are based on the unit square.

FIG. 5. Data management error applied to an inhibited pattern generated as a Markov point inhibition process with model
parameters a 5 0.005, b 5 0.20. Data management errors cause the minimum value of L̂(d ) to lose amplitude, but do not
move to larger distances. Solid circles 5 minimum L̂(d ); panel (a) corresponds with (b), (c) with (d), and so forth. Calculations
are based on the unit square.

and showed up at smaller levels of error, in the distri-
butions with smaller clusters, scluster 5 0.025, 0.05, as
the level of error relative to the cluster sizes was larger
in these distributions. The shift was most pronounced
when serror, the standard deviation of the measurement
error, was $2scluster, the scale of the clusters (i.e., when
the error relative to the cluster size was $100%; see
Fig. 6c).

For addition of measurement error to an inhibited
distribution the minimum values of L̂(d ) increased, to
become closer to CSR, and shifted to larger scales (Fig.
8). Note that when looking only at the MEV, it would
appear that measurement error has a greater effect when
b (the maximum distance at which establishment is
affected by neighbors) is large (i.e., when inhibition is
occurring at greater distances). However this is partly

an artifact of the summarizing process. MEV provides
a useful summary but is not appropriate when the level
of error completely obscures the underlying pattern
(i.e., once the apparent distribution resembles CSR).
When the distribution approaches CSR, MEV lies at
the midpoint of the distances examined. Thus in this
case (where L̂(d ) was calculated from d 5 0–0.3), MEV
for distributions resembling CSR tended to be located
near d 5 0.15 (Fig. 6d). As a result, for the smallest
radius of inhibition influence tested (i.e., b 5 0.05), as
measurement errors increased to a scale larger than b
(i.e., from serror 5 0.05 to serror 5 0.10), MEV actually
reversed its trend, and shifted slightly towards smaller
scales. Thus when examining the effect of measurement
errors on inhibited distributions, the most sensitive
combination of error and distribution types, it was nec-
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FIG. 6. Effects on Mean Extreme Value of L̂(d ) calculated from 100 simulations of addition of (a, b) data management
error or (c, d) measurement error, on (a, c) clustered and (b, d) inhibited patterns. For clustered patterns, scluster was varied:
0.05 (m), 0.10 (m), 0.15 (.), or 0.20 (v). For inhibited patterns the parameter a of the Markov point process was held
constant at 0.005, while parameter b varied: 0.05 (m), 0.10 (m), 0.15 (.), or 0.20 (v). Data management error was simulated
by replacing a percentage of points using complete spatial randomness (CSR): solid symbols, no change; horizontal hatching,
5% change; vertical hatching, 15% change; open symbols, 20% change. Measurement error was simulated by addition of
error from a bivariate normal distribution with serror to all points: solid symbols, no change; horizontal hatching, 0.025;
vertical hatching, 0.05; open symbols, 0.10.

FIG. 7. Measurement error applied to a clustered pattern (scluster 5 0.10), illustrating how increasing data measurement
errors cause the corresponding maximum value of L̂(d ) to lose amplitude and move to larger distances. Solid circles 5
maximum L̂(d ). Calculations are based on the unit square.
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FIG. 8. Measurement error applied to an inhibited pattern generated as a Markov point inhibition process with model
parameters a 5 0.005, b 5 0.20. Measurement errors cause the minimum value of L̂(d ) to lose amplitude and move to larger
distances. Solid circles 5 minimum L̂(d ). Calculations are based on the unit square.

essary to look at the unsummarized data, an example
of which is shown in Fig. 8.

When b is small, measurement errors are larger rel-
ative to the scale of the inhibition, and thus have a
greater effect on L̂(d ). Once serror (the standard devi-
ation of the measurement error) approaches b (i.e., the
measurement error relative to b approaches 100%) it
is impossible to distinguish between the mapped pat-
tern and CSR. Even at levels of serror as small as 20%
of b, the regular pattern resulting from an inhibition
process is more sensitive to the effects of error than
clustered patterns. Often L̂(d ) will no longer indicate
inhibition at small distances, while still showing in-
hibition at larger scales. When looking at small dis-
tances, the relative error is larger, and thus errors tend
to affect small distances first.

Generally detection, and particularly determination
of scale, of both clustered and inhibited processes using
L̂(d ) is less robust to measurement error than to data
management error. Inhibition patterns and small scale
clustering are more sensitive than large scale cluster-
ing.

Standard deviation of Mean Extreme Value (MEV)

The type of simulated error had little effect on the
variance of the extreme value of L̂(d ), or of the variance
of the distance at which this extreme value occurred.
The standard deviation of the MEV ranged from 0.001
to 0.002 for clustered distributions, and from 0.0002
to 0.0004 for inhibited distributions. These values are
much smaller than the differences caused by either type
of error. The standard deviation of the mean distance
at which MEV occurred ranged from 0.002 to 0.008
for clustered distributions, and from 0.002 to 0.011 for
inhibited distributions. These values are much smaller
than the differences caused by measurement error, but
on the order of the differences caused by data man-
agement error.

K̂(d ) applied to the WRCCRF stem map

Spatial analysis of all nine canopy tree species at the
WRCCRF was conducted (Freeman 1997). Here we
choose two examples; live Thuja plicata for investi-
gating clustered distributions, and all live trees .20
cm dbh, for investigating inhibition patterns.

Clustering is the dominant spatial pattern of indi-
viduals of single species (Freeman 1997). Clustering
may be the result of a parent–child process with small
seed spread distances. Also some microclimate varia-
tions may favor a single species and produce clusters.
We chose T. plicata for illustration of the potential
effects of errors because of its reasonable sample size
(n 5 121), and its lack of a visually obvious pattern
in its tree map.

Thuja plicata shows significant clustering at medium
to large scales. Living trees are clustered from ;10 m
to 60 m, with marginal clustering at smaller scales, and
random distributions at larger scales (Fig. 9a). The
cluster size is considerably greater than the level of
measurement error (within tree standard deviation s 5
0.123 m for trees located using one survey point, s 5
0.087 m for trees located with two). Thus measurement
error has little effect on detection or estimate of cluster
size even if trees were mapped from only one grid
point.

Live trees with dbh $20 cm show inhibition between
0.4 m and 13.2 m (Fig. 9b). The minimum intertree
distance was 0.32 m. Levels of measurement error for
this data have little effect on detecting the upper bound
of the inhibition. However, in the simulations, detection
of inhibition began to disappear with levels of relative
measurement error as small as 20% and was entirely
lost when the relative error was 100%. For the data of
live trees of all species with dbh $ 20 cm inhibition
occurring at distances ,0.087–0.435 m (1–5 times the
measurement error) could be obscured by measurement
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FIG. 9. L̂(d ) for subsets of the WRCCRF stem map: (a) Western red cedar, (b) all trees .20 cm dbh. The subset by
species shows significant clustering at medium to large scales (10–60 m), while the subset by size shows significant inhibition
at small scales (0.4–13.2 m).

error. If a single grid point had been used for mapping
tree locations, inhibition at distances ,0.123–0.615 m
would not have been detected. For this map, K̂(d ) can
be used effectively to detect the outer range of com-
petitive influence, b. But the minimum distance be-
tween trees with dbh $20 cm was 0.32 m. Thus the
levels of error found reduced the accuracy of estima-
tions of the minimum establishment distance. Further-
more, data of this quality would be unsuitable for de-
tecting the onset of competition process among small
trees such as clumps of young natural regeneration that
grow at smaller neighbor distances.

DISCUSSION

Data management error.—Data management errors
reduced the strength of identification of patterns by the
L̂(d ) transformation of K̂(d ) but this type of error did
not shift the identification of the scale of the patterns,
even at relatively large error levels, such as 20% re-
placement. Data management error was simulated with
a two-stage process: first, points were removed from
the pattern; second, they were replaced with random
locations. Clustered distributions are characterized by
large numbers of small interpoint distances. Removing
points from these patterns also removed some of these

small distances, causing clusters to become less dense,
but the estimated size of the clusters was not affected.
Random replacement added a few new large distances,
but their contribution to the perceived scale of the clus-
ters was negligible when compared to that of the orig-
inal clusters. Inhibited distributions are characterized
by the lack of small interpoint distances, and the re-
moval of points has little effect on this characteristic.
Random replacement added a few new small interpoint
distances, and thus reduced the perceived strength of
the inhibition, but again the scale did not shift.

Nonrandom replacement at rates ,20% showed little
difference from random replacement. With replacement
rates .20%, pattern identification using K̂(d ) became
less clear. With these higher replacement rates, inhib-
ited distributions were more affected than clustered dis-
tributions. However if actual field data has this amount
of data management error it is probably time to rethink
the study. We only looked at two combinations of spa-
tial pattern and error distributions. It is possible that
other combinations, such as replacing points with the
same pattern but at a different scale, may have greater
effects. This should be kept in mind if this type of error
may be significant in a study.

Measurement error.—Addition of measurement er-
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rors reduced the amplitude of L̂(d ) and the MEV peaks
to larger scales. This effect was strongest when the
scale of errors approached the scale of the underlying
pattern. Because of this (1) inhibition is more sensitive
than clustering, (2) small clusters are more sensitive
than large clusters, and (3) in inhibition, the minimum
establishment distance was more sensitive than the
maximum inhibition.

Both clustered and inhibited patterns showed an ap-
parent shift to larger distances with the addition of
measurement error. Inhibited patterns became indistin-
guishable from randomness at lower error levels than
clustered patterns. In this study the inhibited patterns
were defined by two parameters; a, the distance below
which no nearest neighbor distances are found, and b,
the maximum distance at which an inhibition effect
occurs, with a smaller than b. While b was of the same
scale as 2scluster, a was much smaller. Thus error relative
to a was much larger than error relative to b and 2scluster.

Also while measurement error caused peak maxi-
mum deviation of L̂(d ) from zero for both clustered
and inhibited patterns to shift to larger scales, the caus-
es of this shift were different for the two distributions.
In clustered patterns, measurement error actually
caused the perceived size of clusters to increase (Fig.
7). In inhibited patterns, however, the addition of mea-
surement error did not increase the perceived inhibition
distance. Instead, it obscured small-scale inhibition
while leaving visible larger scale inhibition already
present in the data (Fig. 8).

To understand this effect, the characteristics of clus-
tering and inhibition must be considered, and how these
are reflected in L̂(d ). For clustered patterns, the shape
of L̂(d ) is determined by the increased number of small
interpoint distances relative to randomness. For ex-
ample, if there are clusters 20 m in diameter, then there
are an increased number of interpoint distances be-
tween 0 m and 20 m. If measurement errors are added
to all the points, even measurement errors as large as
serror 5 10 m or serror 5 20 m, there are still clusters.
They just look larger and less concentrated. Some of
the clusters may blur into each other, but this will just
form still larger clusters. When L̂(d ) is calculated from
this data, the maximum value is less, due to the lower
density of trees within the clusters, and the peak shifts
to larger scales, due to the larger size of the clusters.
However L̂(d ) still shows clustering.

On the other hand, L̂(d ) for inhibited patterns is char-
acterized by the absence of small interpoint distances
relative to complete spatial randomness (CSR). If, for
example, there is gradually increasing inhibition be-
tween 20 m and 0 m, then even a level of measurement
error as small as serror 5 2 m or serror 5 1 m will move
points sufficiently to increase the number of interpoint
distances markedly. Then L̂(d ) will not show the small-
est scale inhibition. If the maximum inhibition distance
is greater than the scale of measurement error, there
will still be some evidence of inhibition at the larger

distances; but once the level of measurement error
reaches the scale of the inhibition, nothing will be left
of the pattern.

Wind River Canopy Crane Research Facility stem
map.—In the WRCCRF stem map, mapping each tree
from two grid points made it possible to catch data
management errors by comparing the two tree locations
for discrepancies. This technique reduced data man-
agement errors by 4.5%. But both clustered and inhib-
ited patterns are relatively insensitive to data manage-
ment errors ,20%, and these errors would have had
little effect on the results of L̂(d ). However measure-
ment errors play a bigger role. At levels of relative
measurement errors on the order of those found in the
WRCCRF stem map, the increase in measurement ac-
curacy from the second grid point may be important.
This is particularly so if the researcher is interested in
estimating the minimum establishment distance for an
inhibition process, or in establishing the onset of pos-
sible inhibition among small trees.

RECOMMENDATIONS

(1) Use at least two measurements to locate each
plant. In this study the second measurements on each
tree made at the WRCCRF minimized the fieldwork
required to correct data management errors once after
they were identified. With two or more measurements
to locate each plant it is simply necessary to determine
which measurement is incorrect, and then map the plant
from the remaining measurements. If plants are sur-
veyed only from one measurement, and it is flawed,
the false location may not be discovered; and if it is
discovered, then it is necessary to resurvey the plant
in the field.

(2) Define absolute measurement error for mapped
points under field conditions. It is important not to
assume there is no measurement error. The type and
size of errors depend upon the survey procedure and
instruments used. Two techniques can be valuable; (a)
a more comprehensive survey of a subplot, and/or one
using more accurate equipment, to asses error when
reduced measurements are used, and (b) repeated sur-
vey of a subplot. However these techniques may not
enable estimation of cumulative errors over a large sur-
vey area.

(3) Define relative error for the scale of pattern of
interest. Necessary map accuracy is a function of the
question being asked. A map of individual plant lo-
cations cannot be used to investigate processes occur-
ring at scales that approach the accuracy of the mea-
surements. If a map is only going to be used to inves-
tigate large-scale processes, such as clustering, then it
does not need to be as accurate as a map that will be
used to investigate small-scale processes such as in-
hibition. However use of K̂(d ) in ecology has frequent-
ly been concerned with detecting inhibition and defin-
ing its scale. If an individual plant location map is used
for a general investigation of all spatial processes oc-
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curring in the community, it should be kept in mind
that any spatial processes approaching the scale of the
mapping accuracy might not be revealed by K̂(d ).
When errors are considered, K̂(d ) is not equally pow-
erful for all values of d. Relative error is greater for
small values of d, so there is a greater chance of ac-
cepting the null hypothesis that K̂(d ) does not differ
from complete spatial randomness, when in fact it does
(Type II error).

ACKNOWLEDGMENTS

We are grateful to Dr. David Shaw and his colleagues at
the WRCCRF for having facilitated the mapping of trees, and
to Dr. Peter Guttorp for helpful suggestions during analysis.
Research was performed in whole or in part at the Wind River
Canopy Crane Research Facility located in the Thornton T.
Munger Research Natural Area in Washington State, USA.
The facility is a cooperative scientific venture among the
University of Washington, the U.S. Forest Service Pacific
Northwest Research Station, and the Gifford Pinchot National
Forest.

Although the research described in this article has been
funded in part by the U.S. Environmental Protection Agency
through agreement CR825173-01-0 to the University of
Washington, it has not been subjected to the Agency’s re-
quired peer and policy review, and therefore does not nec-
essarily reflect the views of the Agency and no official en-
dorsement should be inferred.

LITERATURE CITED

Batista, J. L. F., and D. A. Maguire. 1998. Modeling the
spatial structure of tropical forests. Forest Ecology and
Management 110:293–314.

Besag, J. 1977. Contribution to the discussion of Dr. Ripley’s
paper. Journal of the Royal Statistical Society B 39:193–
195.

Boose, E. R., E. F. Boose, and A. L. Lezberg. 1998. A prac-
tical method for mapping trees using distance measure-
ments. Ecology 79:819–827.

Clark, P. J., and F. C. Evans. 1954. Distance to nearest neigh-
bor as a measure of spatial relationships in a population.
Ecology 35:445–453.

Connell, J. H. 1970. On the role of natural enemies in pre-
venting competitive exclusion in some marine animals and
in rain forest tree diversity. Pages 298–312 in P. J. den Boer
and G. R. Gradwell, editors. Dynamics of numbers in pop-
ulations. Proceedings of the Advanced Study Institute, Cen-
tre for Agricultural Publication and Documentation, Wag-
eningen, The Netherlands.

DeBell, D. S., and J. F. Franklin. 1987. Old-growth Douglas-
fir and Western hemlock: a 36 year record of growth and
mortality. Western Journal of Applied Forestry 2(4):111–
114.

Diggle, P. J. 1983. Statistical analysis of spatial point pat-
terns. Academic Press, London, UK.

Donnelly, K. 1978. Simulations to determine the variance
and edge-effect of total nearest neighbor distance. Pages
91–95 in I. Hodder, editor. Simulation methods in arche-
ology. Cambridge University Press, London, UK.

Ford, E. D. 1975. Competition and stand structure in some
even-aged plant monocultures. Journal of Ecology 63:311–
333.

Franklin, J. F., and D. S. DeBell. 1988. Thirty-six years of
tree population change in an old-growth Pseudotsuga–Tsu-
ga forest. Canadian Journal of Forest Research 18:633–
639.

Franklin, J. F., and C. T. Dyrness. 1988. Natural vegetation
of Oregon and Washington. Oregon State University Press,
Corvallis, Oregon, USA.

Freeman, E. A. 1997. The effects of data quality on spatial
statistics. Thesis. University of Washington, Seattle, Wash-
ington, USA.

Haase, P. 1995. Spatial pattern analysis in ecology based on
Ripley’s K-function: introduction and methods of edge cor-
rection. Journal of Vegetation Science 6:575–582.

Hall, R. B. W. 1991. A re-examination of the use of interpoint
distances and least squares in mapping forest trees. Ecology
72:2286–2289.

Hopkins, B. 1954. A new method for determining the type
of distribution of plant individuals. Annals of Botany 18:
213–227.

Janzen, D. H. 1970. Herbivores and the number of tree spe-
cies in tropical forests. American Naturalist 104:501–528.

Kenkel, N. C. 1988. Pattern of self-thinning in jack pine:
testing the random mortality hypothesis. Ecology 69:1017–
1024.

Kenkel, N. C. 1993. Modeling Markovian dependence in
populations of Aralia nudicaulis. Ecology 74:1700–1706.

Kenkel, N. C., M. L. Hendrie, and I. F. Bella. 1997. A long-
term study of Pinus banksiana population dynamics. Jour-
nal of Vegetation Science 8:241–254.

Laesele, A. M. 1965. Spacing and competition in natural
stands of sand pine. Ecology 46:65–72.

Legendre, P., and L. Legendre. 1998. Numerical ecology.
Second English edition. Elsevier Science, Amsterdam, The
Netherlands.

MathSoft. 1996. S1SPATIALSTATS User’s manual, Ver-
sion 1.0. MathSoft, Seattle, Washington, USA.

Moeur, M. 1993. Characterizing spatial patterns of trees using
stem-mapped data. Forest Science 39:756–775.

Moeur, M. 1997. Spatial models of competition and gap dy-
namics in old-growth Tsuga heterophylla–Thuja plicata.
Forest Ecology and Management 94:175–186.

Phillips, D. L., and J. A. MacMahon. 1981. Competition and
spacing patterns in desert shrubs. Journal of Ecology 69:
97–115.

Pielou, E. C. 1959. The use of point–plant distances in the
study of the pattern of plant populations. Journal of Ecol-
ogy 47:607–613.

Pielou, E. C. 1962. The use of plant-to-neighbour distances
for the detection of competition. Journal of Ecology 50:
357–367.

Ripley, B. D. 1977. Modeling spatial patterns (with discus-
sion). Journal of the Royal Statistical Society. Series B 39:
172–212.

Rohlf, F. J., and J. W. Archie. 1978. Least-squares mapping
using interpoint distances. Ecology 59:126–132.

Sterner, R. W., C. A. Ribic, and G. E. Schatz. 1986. Testing
for life history changes in spatial patterns of four tropical
tree species. Journal of Ecology 74:621–633.


